Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.13.23288227

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the cellular disease dynamics remains limited. In our unique COVID-19 human challenge study we used single cell genomics of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in 16 seronegative individuals challenged with preAlpha-SARS-CoV-2. Our analyses revealed rapid changes in cell type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific timepoints or infection status. We observed that the interferon response in blood precedes the nasopharynx, and that nasopharyngeal immune infiltration occurred early in transient but later in sustained infection, and thus correlated with preventing sustained infection. Ciliated cells showed an acute response phase, upregulated MHC class II while infected, and were most permissive for viral replication, whilst nasal T cells and macrophages were infected non-productively. We resolve 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our novel computational pipeline (Cell2TCR) identifies activated antigen-responding clonotype groups and motifs in any dataset. Together, we show that our detailed time series data (covid19cellatlas.org) can serve as a 'Rosetta stone' for the epithelial and immune cell responses, and reveals early dynamic responses associated with protection from infection.


Subject(s)
COVID-19 , Infections
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524211

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure, but the risk of mortality in infected people over 85 years of age remains high, despite vaccination and improving treatment options. Here, we take a comprehensive, multidisciplinary approach to investigate differences in the cellular landscape and function of paediatric (<11y), adult (30-50y) and elderly (>70y) nasal epithelial cells experimentally infected with SARS-CoV-2. Our data reveal that nasal epithelial cell subtypes show different tropism to SARS-CoV-2, correlating with age, ACE2 and TMPRSS2 expression. Ciliated cells are a viral replication centre across all age groups, but a distinct goblet inflammatory subtype emerges in infected paediatric cultures, identifiable by high expression of interferon stimulated genes and truncated viral genomes. In contrast, infected elderly cultures show a proportional increase in ITGB6hi progenitors, which facilitate viral spread and are associated with dysfunctional epithelial repair pathways. A video explaining this work can be found here - https://youtu.be/uExP4bx6D_A .


Subject(s)
Corneal Dystrophy, Juvenile Epithelial of Meesmann , Infections , Respiratory Insufficiency
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253012

ABSTRACT

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in pediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data as a highly granular reference for the study of immune responses in airways and blood in children.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL